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ABSTRACT
In this paper we use features from the rating and trust net-
works of Epinions.com to predict the existence of a trust
edge, and argue that the value generated from the classifier
represents the weight of trust from a member to another.
We then briefly examine how local weights can influence the
dynamics in the network structure, and suggest several fu-
ture directions to continue exploring the interactions in a
weighted network.

1. INTRODUCTION
It is natural to perceive our social network as a weighted
network: we have a few close friends and numerous acquain-
tances. We might loosely put all of them into the type
of “friend,” but we certainly treat them differently. Even
though a great portion of the social network analysis litera-
ture focuses on unweighted networks, where edges are either
present or not, in some cases introducing weights to networks
provides more information about the underlying dynamics.
For example, [11] analyzes the mobile call graph and pro-
poses two candidates for weights: the aggregate call dura-
tion and the cumulative number of calls. In [12] they plot
the subgraph around some individual and color edges by the
aggregate call duration, and it is easy to find that most local
bridges are weak ties, as suggested by [8]. Nevertheless, how
do we know which of these two weight candidates are bet-
ter in describing the relationship between nodes, and even
more, by how much do they differ? To answer these ques-
tion, we use the data from Epinions.com, where one member
can both in a trust network by trusting others, and in a rat-
ing network by rate others’ reviews. We hope by building a
classifier from features in both networks to predict whether
A trusts B or not, we can explain the underlying mechanism
of trust, and use the value generated from the classifier as
the weight about trust. Therefore, the better the classifier
is, the more accurate can these weights describe trust, and
from here, we can then run all sorts of analysis on weighted
networks as suggested in [6]. The rest of this paper is or-
ganized as follows: In section 2 we introduce the rating and

trust network of Epinions.com in more depth, and in section
3 we study the features for the classifier and the resulting
performance from logistic regression. In section 4 we make
an attempt to use weights to explain the dynamics of local
structure, and in section 5 we enumerate possible extensions
of this project after a brief conclusion.

2. NETWORKS IN EPINIONS.COM
2.1 Rating and Trust Networks
Epinions.com is a consumer review site where members write
reviews on products in different categories. For example,
Bob, has watched the first season of Grey’s Anatomy, writ-
ten a review, and assign a score (number of stars) to this
product. Now suppose Alice is interested in Grey’s Anatomy
as well, and want to know what others in Epinions think
about it. Among other reviews, she thinks Bob’s review
contains information for her to make decisions, and she rates
Bob’s review by assigning another score (level of helpfulness)
to it. Any member in Epinions.com can write and rate re-
views, but for clarification, we would refer to Alice as the
rater and Bob the reviewer. In the case where Alice rated
Bob’s review, we call Bob as Alice’s Rating Neighbor (RN),
the pair Alice and Bob as the Rater-Reviewer Pair (RRP),
and the directed multi-graph with members as nodes and
ratings as edges the Rating Network. Note that a RRP is
not an edge in the rating network since Alice might have
rated 5 of Bob’s reviews, but rather a concentration of in-
formation from edges with source node Alice and destination
node Bob. After a few interactions, Alice consistently finds
Bob’s reviews to be valuable, and she wants to see more
of them, so she decides to add Bob into her web of trust.
This action makes Bob one of Alice’s Trust Neighbors (TNs),
and the directed graph with members as nodes and trusts as
edges are called the Trust Network. One cool thing about
the these data is that events like writing/rating reviews and
trust others are mostly dated, and this allows us to examine
not only the static statistics of the rating and trust networks,
but also the dynamics of how networks evolve over time. In
this paper we only focus on out-going edges, but analyzing
in-coming edges also provides perspective on, say, how Bob
can attract Alice’s attention and even her trust, and this
will be examined in the next phase of this project.

2.2 Incentives for Members’ Behaviors
Why would members want to write/rate reviews and trust
other members? Epinions claims in [1] that these behaviors
help general consumers to make decisions on products, but



to ask a member to write hundreds of reviews with thou-
sands of words each, rate thousands of reviews, and trust
hundreds of others, there ought to be some incentives to ex-
plain these efforts. And there are. If you write good reviews
that help others making decisions, then Epinions will gain
revenue by providing consumers with good-quality informa-
tion, and will reward you through the Income Share program
by depositing a share of the revenue into your account. The
details of the formula to compute your Income Share are
vague, with only some guidelines on how to earn more In-
come Share, to prevent any attempts to defraud the system.
Some of the top earning reviews in different categories can
earn from 8 to 65 dollars, and it somehow motivates mem-
bers to write high-quality reviews. Ratings and trusts, on
the other hand, focus more on predicting how helpful a re-
view will be to you: if Alice is now collecting information for
Friends, and Bob happens to write another review about it,
then Bob’s review will be highlighted for Alice if she trusts
Bob (and assigns good rating scores). Even though the ef-
fect of a rating is not as prominent as trust, all it takes for
Alice is just a click after going through Bob’s review, and we
believe this low cost is enough to explain members’ rating
behaviors.

3. WEIGHT AS PREDICTOR OF TRUST
Since the rating and trust networks share the same nodes,
from the trust network, we know whether Alice trusts Bob
(trust RRP) or not (nontrust RRP). We can also derive fea-
tures from both the rating and the trust network that par-
tially describes the relationship between Alice and Bob. For
example, the average rating score describes on average how
helpful does Alice think about Bob’s reviews, and if this
score is high, we believe that Alice is more likely to trust
Bob. Suppose with these features, a classifier is built to pre-
dict/explain whether Alice will trust Bob, by generating a
value between 0 and 1. If this classifier is “good,” the gen-
erated values can be viewed as weights that describes how
trustworthy does Alice think of Bob, and of course the bet-
ter the classifier, the more these weights can explain how
trusts are formed. The rest of this section will enumerate
the chosen features and illustrate the performance of differ-
ent classifiers.

3.1 Features
To predict how Alice thinks of Bob, there are at least four
relevant aspects:

• Alice’s personal characteristics: How likely is Alice to
trust others? How active is Alice? How long has Alice
been a member? Answers to these questions describe
how Alice initiates a trust edge and provide a base-
line on her behavior. Here we pick the ratio of Alice’s
number of TNs to her number of RNs, telling us Alice’s
interpretation about trust.

• Bob’s personal characteristics: As the person to be
trusted, Bob’s public image is also important, and this
includes the number of reviews he writes, the quality
(helpfulness) of his reviews, the number of people that
trust him, and so on. For now we only use Bob’s num-
ber of trusted-bys, and it is natural to think that Bob
is more likely to be trusted by Alice if he has been
trusted by many others as well.

Figure 1: Weighted propagation of trust. How does
the existence of A→C and C→B with weights w1 and
w2 influence the addition of A→B.

• How Alice think about Bob: Two easiest parameters to
get from the rating network are the number of ratings
and the average rating score, indicating the frequency
and the quality of this one-way interaction. However,
with Alice initiating these rating edges, we need to
consider how Alice treats her other neighbors. To take
this into account, we can record the number of ratings
(and the average score) for all Alice’s RNs, calculate
the mean and standard deviation for these values, and
use them to normalize the number of ratings (and the
average score). We will see the different roles played by
unnormalized and normalized parameters in the per-
formance of classifiers.

• The local network structure around Alice and Bob:
Whereas the previous normalization can be viewed as
considering the local structure in the rating network,
we will examine how Alice and Bob interact with their
neighbors in the trust network. Specifically, we focus
on the number of intermediate nodes that form 2-hop
transitive paths from Alice to Bob, such as nodes like
C in Figure 1. It is easy to imagine that the chance
for Alice to trust Bob is higher if there are many inter-
mediate nodes to “propagate” Alice’s trust to Bob. To
compute this feature, however, the edge AB can only
happen after the existence of AC and CB, which means
this feature cannot be calculated for edges generated
on the “first” date of the trust network.

Since both networks change over time, the above features
will have distinct values at different time points. How should
we choose the proper time point to obtain one value for these
features? For the trust RRP, since the ratings after Alice
trusts Bob have no influence on Alice’s trust decision in a
causal world, we can concentrate on the dynamics before
trust, and use the date that Alice trust Bob as the time
reference for this trust RRP. On the other hand, if Alice and
Bob form a nontrust RRP, every time Alice rates Bob, she
checks his performance in these features and decides that he
is not qualified. Therefore, we would record these features
whenever Alice rates Bob, and pick the maximum value for
this nontrust RRP.

3.2 Data Crawling Process
Even though there is a clear boundary indicating where
these networks end, there is no easy way to collect all nodes
and edges other than directly asking Epinions staff for them.
Instead of doing that, we use the traditional snowball sam-
pling method to get as many members as possible. We start
with a set of members acquired from the list of most pop-
ular authors in each year, and treat them as a seed. For
each member in the seed, we collected her web of trust (in-
cluding people who she trusts and people trusted by her),



Table 1: Relative accuracy for classifiers with different predictors compared to random guessing (with accu-
racy 0.5) for data set with equal size of trust and nontrust RRPs.

Feature NumRtg Nor. NumRtg AvgScr Nor. AvgScr NumTrustedBy TRRatio All
Performance 1.318 1.364 1.296 1.167 1.249 1.449 1.659
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Figure 2: For all RRPs, plot the ROC curve for
classifiers with individual features as predictors and
the classifier uses all features to predict.

her list of reviews, and the corresponding ratings for every
single review. If any new member is encountered during
the above process, we add them to the seed as well. The
process continues until all members in the seed have been
looked up once, and no more new members are found. It
is not clear how many other members are missed, but from
our knowledge about social networks, most of them form a
giant connected component containing more than 90 per-
cent of the nodes. Besides, for the nodes that are left out
in this discovery process, they tend to be either isolated or
forming small components, and hence are unlikely to influ-
ence the performance of classifiers much. Therefore by using
both rating and trust networks, we are confident in collect-
ing enough data for analysis, compared to crawling only the
trust network, as in most literature analyzing Epinions.com,
like [9].

3.3 Basic Statistics
Using the method discussed previously, we are able to col-
lect data from Jan-10-2001 to Sep-10-2009, among them
are 176,825 members, 585,569 trust edges, 24,973,786 rat-
ing edges, and 6,059,215 RRPs. For each nontrust RRP, it
is clear that there will be at least one rating corresponding
to it, otherwise this RRP would never be discovered by our
crawling process. For the trust RRPs, however, it is possi-
ble that the rater never rates the reviewer before trusts him,
and it would be difficult to figure out how this trust edge ini-
tiates from our data. Therefore, we would restrict ourselves
to trust RRPs with at least one rating before the rater trusts
the reviewer. Another situation we try to avoid is when Al-
ice rates someone but trusts no one. In this case, we don’t
know whether none of Alice’s rating neighbors have reached
her trust threshold, or Alice is simply too lazy to add them
to her web of trust, and her existence cannot improve the
performance of classifiers. If these suggestions are followed,
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Figure 3: For RRPs after Jan-10-2001, plot the ROC
curve for classifiers with individual features as pre-
dictors and the classifier uses all features to predict.

we now have 5,358,033 RRPs, with 387,019 trust RRPs and
4,971,014 nontrust RRPs. To compute the number of inter-
mediate nodes, however, we need to delete trust RRPs with
reviewer being trusted on Jan-10-2001. To compensate for
trust RRPs, we also remove nontrust RRPs with the last
rating about the reviewer is on Jan-10-2001. We are now
left with 168,405 trust RRPs and 3,050,836 nontrust RRPs,
and we will build another classifier with smaller size of data
but one more predictor.

3.4 Building Classifier
Curious about how these features perform as a classifier, we
choose logistic regression as the first trial. Other possibili-
ties include decision trees, naive Bayes, and support vector
machine, which might tell us different perspectives about
these features. One thing to notice is that, whether we use
the number of intermediate nodes as a predictor, the size of
the trust RRPs is much smaller than that of the nontrust
RRPs, and this might place some constraints on how well
logistic regression can perform. Several methods to address
class imbalance is discussed in [14], from which we decide to
under-sample the nontrust RRPs to the size of trust RRPs,
and build a classifier from this new data set. This trained
classifier will then be used to test all RRPs and performance
being compared. One common drawback for under-sampling
is to discard information from the nontrust RRPs and pos-
sibly degrade the performance of the classifier, but with the
abundance of our data, the empirical difference is so small
that we can ignore it. Another issue brought out by the rar-
ity of trust RRPs is how practical accuracy is. If we claim
every RRP to be nontrust, we can have a classifier with ac-
curacy higher than 0.9 but is useless for us. By examining
the Receiver Operating Characteristic (ROC) curve, we can
adjust thresholds to see how the false positive rate varies
with the true positive rate, and choose the proper tradeoff



Table 2: The number of trust and nontrust RRPs
with a specific number of intermediate nodes.

NumInter 5 10 15 20
Trust 6014 3224 1982 1158

NonTrust 35194 13400 7047 4082

NumInter 25 30 35 40
Trust 841 515 414 264

Nontrust 2463 1670 1110 711

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC for different number of intermediate nodes in NorNumRtg

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

 

 

5
10
15
20
25
30
35
40
Random

Figure 4: For RRPs with a specific number of in-
termediate nodes, plot the classifier ROC curve by
using network features from normalized number of
ratings.

level between trust and nontrust RRPs.

3.5 Regression Results
For the first set of 5 million RRPs, the classifier performance
by using each individual feature is shown in Figure 2. In gen-
eral we see one classifier outperforms another in some region
but is beaten in others, and even if the average score looks
better than the normalized average score, it is too early to
argue that the normalized average score is of no use given the
average score. To have a first order understanding about the
difference of classifiers, we use the data set with equal-sized
trust and nontrust RRPs for training and testing, and set
the threshold to be 0.5 to compare performance. With 50%
accuracy for random guessing, in Table we list the relative
accuracy of classifiers compared to random, and the average
score and the normalized number of ratings are better than
their counterpart in this setting. Actually the ROC curve
by using all predictors is very close to the classifier with
only Nor. NumRtg, AvgScr, and TRRatio, which roughly
tells us the interdependence of features. If we remove RRPs
on Jan-10-2001 and include another feature, the resulting
ROC curve is shown in Figure 3. Even though some individ-
ual predictors perform better in this case, the performance
degradation by removing 2 million RRPs is so huge that
even the addition of an extra feature does not help. Once
again, the effect of NumRtg, Nor. AvgScr, and NumTrust-
edBy can roughly be replaced by the presence of the other
features.

4. WEIGHTED PROPAGATION OF TRUST
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Figure 5: For RRPs with 10 intermediate nodes,
plot the ROC curve for classifiers that either use
only one perspective, or all of them.
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Figure 6: For RRPs with 40 intermediate nodes,
plot the ROC curve for classifiers that either use
only one perspective, or all of them.

With the weights generated in the previous section to ex-
plain the directed trustworthiness, what other aspects about
the networks can these weights provide? Let’s consider Fig-
ure 1 again, and assume the RRP AB has only one interme-
diate node C. Consider two cases where in one w1 = 0.9 and
w2 = 0.8, whereas w1 = 0.1 and w2 = 0.2 in the other. If
these weights truly capture the trust relationship, we would
expect the chance for A to trust B higher in the first case.
This can be viewed as a weighted version of trust propaga-
tion, and we are curious about how weights influence the
flow of trust in our data set. We cannot directly use the
weights from the previous section, because with only 7 or 8
features, we cannot argue that the full dynamics have been
captured by our classifier. What is more, it is not clear what
it means to use the predicted values to predict trust again.
Therefore, we fall back to the traditional idea by letting the
normalized number of ratings as one weight, and see how
this weight differentiates the propagation of trust.

In our data, one RRP can have more than one intermediate
node, and when there are multiple paths for trust to flow,



we don’t know the critical ones that guides A to trust B.
Therefore, we would examine RRPs with the same number
of intermediate nodes, and extract features from this local
structure. When there is only one intermediate node, we
see there are at least four possible perspectives of how these
weights matter, including w1, w2, w1 + w2, and w1w2. Now
for more paths in between, we can add features like the av-
erage of the highest two w1’s, or the average of the highest
three w1w2’s. In general, for each perspective, we use fea-
tures from the the highest weight up to the average of the
top 80% weights, and the hope is that some of them will cap-
ture the actual trust flow and allow us to distinguish trust
v.s. nontrust RRPs.

From the statistics in Table 2, we see as the number of inter-
mediate node increases, the total number of RRPs decreases,
and the proportion of trust RRPs increases. We stop at
40 intermediate nodes because beyond that, the number of
RRPs will be less than 1,000, and the variance of the classi-
fier will be huge. For different number of intermediate nodes,
the performances of classifiers built from logistic regression
are shown in Figure 4. We notice that as the number of
intermediate nodes increases, the classifier performance im-
proves, but with fewer data, we also need to provide the
significance level to tell how confident we are.

Now for a specific number of intermediate nodes, we want to
know how different perspectives perform in this case. When
there are 10 intermediate nodes, in Figure 5 we see that w1

dominates all other perspectives, and including them into
the classifier does not improve much. On the other hand,
when there are 40 intermediate nodes, all four perspective
performs about the same from Figure 6, and the joint clas-
sifier outperforms any of them, meaning that they carry dif-
ferent information about the network structure. From these
two figures we observe that when the number of intermediate
nodes is small, with a slightly higher probability, A tends to
trust members trusted by C who she values more, and how
C thinks of B is not that relevant; as the number of interme-
diate nodes grows, the importance of the second tier weights
increases as well, and this weighted trust propagation tells
us more than the unweighted one.

In the case of 40 intermediate nodes, there will be 128 predic-
tors if we use all 4 perspectives. How do these features per-
form relative to one another? If we normalize these features
before applying logistic regression, then the corresponding
coefficient of each feature roughly tells us how important it
is. In Figure 7 we plot the logarithm for the coefficient mag-
nitudes, grouped in perspectives, with x axis the number of
highest weights being averaged. We see that after including
more than 10 top weights, most features begin to contribute
to the classifier. Also, with w1 being relative important
when the number of averaged weights is small, other per-
spectives start to outperform w1 by including more paths
for average. So far the analysis has been based on a par-
ticular measure for weights, but with the observations of
this exercise, we have a rough idea about how weights influ-
ence local network structure, and we expect a more delicate
statement once we have a better classifier and know how to
interpret the results.

5. CONCLUSIONS AND FUTURE WORKS
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Figure 7: For the classifier with 40 intermediate
nodes, plot the log of the coefficient magnitude for
features with different perspectives.

In this paper we have introduced the network data from
Epinions.com, extracted features from these data, and built
a classifier with logistic regression to explain the existence of
trust edges. Besides, we use normalized number of ratings as
a simplified weight to demonstrate the effects weights have
on the local network structure. Of course, there are several
refinements to improve our current work, not to mention as-
pects to observe these data differently. The first thing to
know is that while trust edges provide us certain relation-
ship about the RRP, for nontrust RRPs we are not sure
whether the reviewer is not good enough, or the rater is
too lazy to add him to her trust list. This suggests that
we should treat trust RRPs as labeled and nontrust RRPs
as unlabeled data, and run semi-supervised learning instead
of supervised learning by emphasize the existence of trust.
This method should be more practical and introduce the
possibility of unlabeled but potentially trust RRPs. Other
possible extensions would be discussed before we end this
paper.

5.1 More Features
The features we used for prediction is by no means the only
possibility. For network structure itself, [10] has summa-
rized dozens of network features for an undirected network,
with their individual predictive accuracy compared to ran-
dom guessing. We can generalize these features into our
directed rating/trust network and enrich the explanation
for trust. Besides, there is another aspect about features
that we deliberately ignore in our previous discussion: the
similarity between Alice and Bob. As mentioned before,
reviews are about products in different categories, such as
cars, books, or electronics. If all Alice cares about is books
but Bob only write reviews on cars, it is unlikely for Alice to
rate Bob’s review, not to mention trust him. This suggests
that the undirected measure, similarity, should also be taken
into account. Hopefully with the expansion of the feature
set, we are able to identify the features that explains trust
well enough that leads to more analysis on this weighted
network.

5.2 Distrust from TrustLet



Epinions allow Alice to put Bob into her web of trust if
she likes Bob’s reviews, but what if she thinks his reviews
are pointless? Actually, Alice can put Bob into her block
list in the second case, and Alice will never have to read
reviews from Bob. This distrust lies in some of the non-
trust RRPs, and could provide more insight into member
interactions if combined with trust edges. Unfortunately, to
prevent hard feelings, the block list is kept private only to
its owner, and the only way to access it is via Epinions staff.
In the extended dataset of TrustLet [3], a full list of trust
and distrust edges is available up to Aug-12-2003, except
the members name are replaced with ID numbers, and we
don’t have the mapping between these two. To make use
of this data, we can create a subgraph of the trust network
up to the same date, and apply algorithms in [5] to acquire
the most likely mapping between the true anonymous net-
work and our partial network. We can now replicate the
analysis in this paper to a 3-way classifier, and enhance the
performance of our trust/distrust predictor.

5.3 Triadic Position Census
Triadic census, as described in [13], has been widely dis-
cussed in sociology literature. It deals with all 16 possible
configurations in a directed 3-node network, and discuss, for
example, how stable these structures are as to appear in real-
word data. If we go one step further by separating different
roles in each of these configurations, then we end up with 32
possibilities, as mentioned in [7], and we call these triadic
position census after James Moody’s slides [2]. [4] provides
an algorithm to determine the triad census of a network,
which can be easily modified to deal with triadic position
census. With these ready tools and the time stamps of the
trust network, we can calculate the transition probability
from one configuration to another, and even build another
model with these local dynamics to explain the global net-
work evolution.

5.4 Evolution of Weights
If Alice trusts Bob in 2001 with weight 0.9, does she hold
the same attitude towards Bob in 2009? Unlikely. With a
good enough classifier, there is a corresponding formula de-
scribing how features jointly contribute to the final weight.
Instead of using one weight for each RRP, we can now com-
pute these weights on the fly and observe how these weights
change as time goes. The most natural target would be the
RRPs where the reviewer was once trusted but later being
removed from the web of trust, and this information can be
obtained by the mismatch between our data and those from
TrustLet. Another related topic is to explore how previous
interactions are forgotten by members. The easiest way is to
assume an exponential forgetting curve, introduce the dis-
count factor to our features, and calculate the best fit as a
classifier. But there is no guarantee that exponential is the
right curve: we might remember everything up to a certain
moment and forget everything before that. To characterize
the general shape of forgetting curve, we need to record the
time difference between the date of some feature and the ref-
erence point of its corresponding RRP, collect features that
are of similar time distance into a bin, and train a model to
get the forgetting coefficients.
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